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Abstract—A straight dislocation parallel to the interface of two perfectly bonded dissimilar linear
elastic half-spaces experiences a Peach—Koehler image force tending to move the dislocation toward
or away from the interface. As a rough rule, the dislocation is repelled from the interface when it
resides in the elastically softer of the two half-spaces and is attracted to the interface when it resides
in the stiffer half-space. Here we prove that this rough rule holds exactly for “proportional”
anisotropic bimetals, i.e. two perfectly joined half-spaces for which Cy;, (2) = ACyy, (1), where the
constant A is positive, so that for a dislocation in medium (1) repulsion occurs when 4 > 1 and
attraction occurs when 4 < 1. The rough rule does not always hold, since Dundurs and Sendeckyj
have shown that for a pure edge dislocation in a bimetal composed of two perfectly bonded dissimilar
isotropic half-spaces, either (1) the dislocation is attracted to the interface from one side and repelled
from the interface from the other side (the usual case), or (2) the dislocation is repelled from the
interface no matter which half-space is dislocated. The possibility of attraction from both sides
(mutual attraction) does not occur for a pure edge dislocation. The present work shows that if the
dislocation is mixed (if it has both edge and screw components), then mutual attraction in an
isotropic bimetal is possible. We delineate how the elastic constants and the screw component must
be specified to produce mutual attraction.

1. INTRODUCTION

Dundurs and Sendeckyj (1965) have considered the problem of two joined isotropic linear
elastic half-spaces of different elastic constants with one of the half-spaces containing an
edge dislocation line parallel to the bimetallic interface. By examining the Peach—Koehler
force on the dislocation induced by the presence of a second phase, they were able to show
that for all choices of elastic constants corresponding to stable elastic half-spaces either one
of two possibilities exists, namely:

(i) the dislocation is attracted toward the interface from one side and is repelled from
the interface from the other side; or

(ii) the dislocation is repelled from the interface regardiess of which half-space is
dislocated.

The possibility of “mutual attraction” to the interface, i.e. attraction of the dislocation to
the interface from both sides cannot occur for pure edge dislocations. A brief proof of this
result using the Dundurs parameters « and f (Dundurs, 1969) is given in the Appendix.
Case (i), which we shall call “attraction—repulsion”, is the usual state of affairs; as a rough
rule one thinks that attraction toward the interface occurs when the dislocation resides in
the elastically ‘““harder” half-space and that repulsion from the interface occurs when the
elastically “‘softer”” phase is dislocated. With no precise definition of the terms elastically
“harder” and “softer”, the rule is only rough and the fact that case (ii) (*‘mutual repulsion™)
is a possibility attests to this point. The rough rule is exact for a screw dislocation in a
bimetal formed by two perfectly bonded isotropic half-spaces, with the ratio of the respective
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half-space shear moduli providing the only important measure of “hardness” (Dundurs,
1969).

In the present work we begin with a concise proof that the rough rule mentioned above
is exact for any dislocation in one of two stable perfectly bonded “proportional’ anisotropic
linear elastic half-spaces (Lothe, 1992), i.e. two half-spaces whose elastic stiffnesses are
related by Cj; (2) = AC; (1), where 0 < 4 < o0, so that when 4 > 1 (< 1) medium 2 is
elastically harder (softer) than medium 1. The remainder of the paper considers an extension
of the work of Dundurs and Sendeckyj (1965), namely the possibility that ““mutual attrac-
tion” may exist for a mixed straight dislocation line (both edge and screw character) paraliel
to the interface between two perfectly bonded dissimilar stable isotropic linear elastic half-
spaces. We shall show that there exist both ranges of Burgers vector orientations and
choices of elastic constants that permit “mutual attraction”. The conditions for mutual
attraction can be defined without recourse to numerical computations, although a somewhat
lengthy analysis of inequalities is required. We have endeavored to present the analysis in
sufficient detail for the interested reader to follow, while at the same time attempting to
adhere to space limitations.

2. A THEOREM FOR PROPORTIONAL ANISOTROPIC BIMETALS

Barnett and Lothe (1974) and later Rice (1985) have considered the general problem
of a dislocated bimetal consisting of two perfectly bonded anisotropic linear elastic half-
spaces and have shown that the image force tending to attract the dislocation toward or
repel the dislocation from the interface is given by

E(1—2)—E(i)_

10 = . Ci=1,2. 0

In eqn (1), i refers to the half-space containing the dislocation line (which is straight,
infinitely long and parallel to the interface), 4 is the separation of the dislocation from the
interface, E(i) is the pre-logarithmic energy factor for the dislocation when it resides in an
infinite medium elastically identical to the half-space denoted by i and E(1—2) is the pre-
logarithmic energy factor for the same dislocation when it resides at the interface between
the two media. > 0 indicates repulsion from the interface and f < 0 indicates attraction.
Obviously f vanishes when the two half-spaces are identical.

Now consider that the dislocation resides in medium 1. For our purposes, a more
useful form of eqn (1), which may be obtained from the analysis of Ting and Barnett
(1993), is

2nhf® = TR~ 'b—bTV; b, )

where b is the dislocation Burgers vector, the superscript T indicates transposition and the
matrices R and V, are given in terms of the impedance matrices M, and M, for the respective
media by (* indicates complex conjugation)

R =M;!+(M*);' (3a)
V=M +M*)7 (3b)

M,, M, and their inverses are hermitian and (for stable elastic media) positive definite;
hence, R, as well as its inverse, is hermitian and positive definite and V,, as well as its
inverse, is real and positive definite. When the two half-spaces are “proportional”, i.e.
when C,,, (2) = AC,;, (1), Ting and Barnett (1993) have shown that
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1
M;! :ZMI_I' )

Thus, for a “proportional” anisotropic bimetal with the dislocation in medium 1,
2nhf™ = BTR'(A)b—bTR'(1)b (5)
with
1
Ru)=mn‘+;mvx*. (6

If we compute d/V/4 from eqn (5) and note that, from RR™' =1 (the 3 x 3 identity
matrix),

JR™! _,O0R_ | 1 111
we obtain
oM 1
“—=——b"R ' AM*; 'R (Db>0 8
= g R ORI () @®

since the right side of eqn (8) is a positive definite quadratic (hermitian) form for all nonzero
real b. Hence, /" is a monotonic increasing function of 1. Since /" vanishes when A = 1,
S is negative for 0 < A < 1 and is positive for 1 < A < co.

Thus we have proven that “a straight dislocation line parallel to the interface of a
‘proportional’ anisotropic bimetal is attracted to (repelled from) the interface when the
dislocation resides in the elastically harder (softer) half-space”. Case (i) mentioned in the
Introduction, i.e. “attraction-repulsion”, is the only possibility for proportional bonded
half-spaces.

3. MUTUAL ATTRACTION FOR MIXED DISLOCATIONS

Consider a bimetal composed of two perfectly bonded isotropic linear elastic half-
spaces whose shear moduli and Poisson’s ratios are u,, v, and u,, v,, respectively. Without
loss of generality we may label the half-spaces so that

Ap = pr—p, >0. ®)
The case Ax = 0 does not permit mutual attraction, as can be seen from eqn (15) and the
argument preceding inequality (18). It 1s convenient to define the constants x;and t; (i = 1,

2) by

K; =3—4v, (10a)

=t (10b)

T l—y,
For stable elastic half-spaces, y, > 0and —1 < v; < %, from which it follows that
1l <x; <7 (11a)

0<%<q<mﬁ (11b)



294 D. M. Barnett and J. Lothe

Let us consider a mixed dislocation of Burgers vector b such that (7/2) — 8 is the angle
between b and the dislocation line, i.e.

b (screw) = bsinf; b (edge) = bcosh. (12)
The pre-logarithmic energy factors in eqn (1) reduce to

2

b
E(@) = ym [t;cos® 8+ p; sin® 6] (13)

E(1-2) =5~

: |:C s? 0#1#2{#2('61 + 1)+ p (ke + 1)}
{parey + i H{prs + 2} U

+ sin? el‘—:’_%] (14)
2

Expressing k; in terms of 7, and g, allows us to write the force on the dislocation when it
resides in the ith phase as

8th 2uA
—;—f O = (AAu+ Ac) cos® O+ ﬁsinz o (15)

where the upper signs go with i = 1, the lower signs go with i = 2 and

At =1,—1, (16)

A= (t1 + 1) (T T2 Ap—4u, 1, At) a7

(Ao =1 A (G po +12Ap)
By virtue of eqn (9) and inequality (11b), the denominator in eqn (17) is positive so that
the sign of A4 is determined solely by the sign of the second term in the numerator.

If the dislocation under consideration is to experience mutual attraction toward the
interface, then both /™ and f® as determined from eqn (15) must be negative. Furthermore,
we know that for a pure edge dislocation (§ = 0) the results of Dundurs and Sendecky;)
(1965) and Dundurs (1969) show that it is impossible that both AAu+ At < 0”. Bearing
in mind that we have labeled the half-spaces so that Ay > 0, clearly /" is negative if and
only if

AAp+AT <0 (18)
and if 0 is chosen such that
At
A+ rﬂ
tan’ <« — ——— =tan’40,. 19
200 /(uy + 1) ' (19)

If inequality (18) is valid, then the Dundurs and Sendeckyj result for pure edge dislocations
requires that

AAp—Atr >0, (20)

from which it follows that f® will be negative provided that 6 is chosen such that
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At
A— =
Au

————— =tan®0,. 21
20/ (s + ) ?

tan? 6 >
Satisfaction of both inequalities (18) and (20) requires that
— <A< —— (22)

which can only be fulfilled if
At <0. (23)

The condition (23) has two important consequences. Firstly, inequality (23) and eqn
(9) imply that

1—
By, (24)
l—v,
so that
v, <v; and k, >k, (25)

i.e. if mutual attraction is to occur, the haif-space with the smaller shear modulus must
have the higher Poisson’s ratio. Secondly, inequality (23) ensures that the numerator in eqn
(17) is positive so that 4 > 0 and inequality (22) has the sharpened form

0<a<- (26)
Ap

In addition to satisfying the inequalities (23) and (26), we must guarantee that
tan® 0; > tan® 6, so that there will exist an interval (6,, 6,) within which 0 can be chosen.
From eqns (19) and (21) this leads to

At At
A+ — A——
An Au @7
200 /(g +12) 200/ (uy + )
which simplifies to
At
- 2
A< Ap" (28)
where
Ho— 1y
O<p=———x<1. 29
4 Mo+ Uy @9)

When inequality (28) is fulfilled, inequality (26) is automatically fulfilled, so that inequalities
(26) and (28) can be replaced by eqn (28) alone.

It remains for us to show that inequality (28) can be fulfilled for choices of the half-
space elastic constants which satisfy the stability requirements (according to our labeling)
Uy > py; > 0and 7 > k, > k, > 1. To this end let us define
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J=dpu -1, Ap>0 (30a)
J
w=t1Au>O (30b)
s=2, (30c)
T

Since 0 < 1, < 1; for mutual attraction to be possible, the allowable range of s to be
considered is 0 < s < 1. Simple algebraic manipulations allow us to reduce the inequality
28) to

+DH(1l+ow—ws)

w(w+s+1) <{d=9n. (31
At s = 0, inequality (31) is satisfied if
1
n>— (32)
w

as we shall soon prove, inequality (32) is always satisfied for stable elastic half-spaces. At
s = 1, inequality (31) is satisfied if

2
—— < 3
w(w+2) <0 (33)
since w > 0, inequality (33) is never satisfied. Thus, if inequality (32) is fulfilled, there will
always be some interval 0 < s < § < 1 for which the inequality (31) is satisfied. However,
we must also be able to show that the interval 0 < s < § corresponds to choices of elastic
constants which satisfy the stability requirements. Now fulfilment of inequality (32) requires
that

Ha — I > T, Ap

34a
Bot iy App —TAp (340)
or
1 T
> 34b
Hitps o Apps—1,Ap (3b)
or
du
<= (340)
1
or
4
1<%—1=4(1—v1)—1 (34d)
1
or
1 < 3_4V1 = Kl) (346)

which is simply one of the stability conditions for medium 1. Hence, stability of medium 1
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guarantees that inequality (32) is always satisfied and that inequality (31) is satisfied for all
sin (0, § < 1).

In order to study the implications of the satisfaction of inequality (31), we note that
inequality (31) can be rewritten as

G(s) = sPo(l —n) —s(l +nw?) + (1 +w)(nw—1) > 0. (39)
Since G(0) > 0 by virtue of satisfaction of inequality (32) and G(1) = —2, G(s) has one

real zero in (0,1) namely §; the other zero is real and larger than unity. Introducing the
notation

r=£2-, (36)
H
so that
1+K1
=T 1+x, 37
-1
n= r+1 (38)
and
FK] +1
S (39)
allows us to deduce that
2Tk, +1)
o(l-n=—F7— 40
(-m == (40)
(14+x)HIM? 42Tk,
1 +n0’ = 41
n - (41)
(e + DI
R “2)
and
. (e, —DI
no—1= T+1 43)
Using inequality (36) and eqns (37)—(43) shows that § is the smallest root of
2Tk, + 1)s* —sT[(1+x)T + 2k, ]+ (ki - DI? = 0. 44)
Thus, the inequality (35) is satisfied if
1+xk, 1 ,
s [C{(Q+x)H+2k,} —TN], (45)

= <
1+x, 4Tk, +1)
where

SAS 32:3/4-C
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N =[((Q+x)T +2K,>* =8 (k1 — 1)(T'r, + 1] (46)

Canceling I" from both sides of eqn (45) followed by straightforward algebraic manipu-
lations leads to

Ky > [(14+x)T +2+N]. (47)

I
206, — 1)

For mutual attraction, however, we know from inequality (25) that x, > &, which, coupled
with the requirement that medium 2 is stable, leads to the extended inequality

7 > Kk, > max {xl,mll_—l)[(l+x%)r+2+N]}. (48)

Satisfaction of the inequality (48) (together with the requirements that I' > 1 and
1 < k, < 7) allows us to specify ranges of half-space elastic constants and screw dislocation
components permitting mutual attraction to occur. The inequality (48) is a particularly
convenient form, since the right side of the inequality does not contain k, and the left side
is a definite numerical bound. The next section is devoted to an analysis of the implications
of this inequality.

4. ANALYSIS OF THE MUTUAL ATTRACTION INEQUALITY

Let us first examine the condition that

1 2

which can be recast as
14k, —16—(1+x)I > N. (50)

Since N is real [the two roots of eqn (44) are real] and never negative, the left side of
inequality (50) must be positive, so that

14K, — 16
< —
14«2

1<T (51)

When inequality (51) is satisfied, we may square both sides of inequality (50) and rearrange
to obtain

251, —31
| <D<—81 72 (52)
3k2—x, +4

The inequality (52) is a stronger condition than inequality (51), i.c. if inequality (52) is
satisfied, so is inequality (51). We can select a range of I satisfying inequality (52) if and
only if the right side of inequality (52) is larger than unity, which leads to

(Br, =5k, —7) <0, (53)

which, since | < k; < 7, requires that
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k; > Sand thusv, <3 (54)

3

It remains for us to determine which is the larger of the two bracketed terms on the
right side of inequality (48). Suppose that

K, > 2TKII—_I—)[(l+1cf)l“-+-2-f—N], (55)
which is equivalent to
2k (k=) —(1+xPHT'=2> N (56)
or
2kt —x, = 1)—(1+x}HT > N. (57

We shall now prove that inequality (57) is never satisfied for I > 1 and 1 < kx; < 7. Since
N is nonnegative, the left side of inequality (57) must be positive and, if this is the case,
squaring both sides of inequality (57) yields, after rearrangement and cancellations, the
inequality

(1=T)(2 — DK, —1)> > 0. (58)

With I' > 1 and 1 < x, < 7, the inequality (58) is never satisfied. Thus, inequalities (57)
and (55) are never satisfied when medium 1 is stable and hence k, is always the smaller of
the two bracketed terms on the right side of the inequality (48). As a result, the “mutual
attraction” inequality (48) takes the unambiguous form

(1+xk)HC+2+N

7
> K, > e )

(59)
In addition, the inequalities (54) and (52) must be satisfied.

S. SELECTION OF ELASTIC CONSTANTS PERMITTING MUTUAL ATTRACTION

We may now state a simple algorithm for selecting isotropic half-space elastic constants
which admit the possibility of “mutual attraction™.

(1) Pick g, > 0.
(2) Pick

§<K, <7 (=1<wv <%).
(3) Select y, so that I' = u,/u, satisfies

25k, —31

1<TT<——".
3kl —xk, +4

For the allowable range of k,, I' will lie between 1 and 1.58.
(4) Choose k, so that
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(1+xDHT+24+N
7>K2>—————2(K1_1) ,
with N given by eqn (46). It is easy to show that x, so chosen will be greater than 3, so that
—1l<v, <.

The bimetal so constructed is stable and yields “mutual attraction” provided that the
screw component of the dislocation is selected so that 6, < 8 < 0,, where 8, and 6, are
defined by eqns (19) and (21). Our algorithm for choosing appropriate elastic constants for
the two half-spaces guarantees that the interval (6, 6,) exists.

6. SUMMARY AND CONCLUSIONS

We have shown that two perfectly bonded stable “proportional” anisotropic linear
elastic half-spaces allow only ‘“‘attraction—repulsion” to occur. For two perfectly bonded
dissimilar stable isotropic half-spaces “mutual attraction” is a possibility for mixed dis-
locations, provided that the half-space elastic constants and the screw component are
suitably chosen. The medium with the lower shear modulus must have the higher Poisson’s
ratio and that Poisson’s ratio must lie between —1 and 1/3 (the smaller Poisson’s ratio
must be negative), while the ratio of higher to lower shear modulus cannot exceed 1.58.
Thus, a stable isotropic half-space whose Poisson’s ratio is larger than 1/3 cannot be
perfectly bonded to any other stable isotropic half-space so as to permit “mutual attrac-
tion”. These results have helped Lavagnino and Barnett (1994) to investigate the possibility
of mutual attraction occurring in anisotropic bicrystals. They have shown that even in
identical half-spaces slightly misoriented to produce twist boundaries, either mutual attrac-
tion or mutual repulsion is always possible in all crystal classes for all real materials.

We close by acknowledging the debt of gratitude which all who have worked in
dislocation elasticity for the past three decades owe to Professor John Dundurs. It is a
privilege and a great pleasure to have been extended the opportunity to contribute to this
special volume in his honor.
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APPENDIX

In Dundurs [1969, eqns (5.15) and (5.20); the quantity 42 in eqn (5.20) should read 4}] it is shown that a
pure edge dislocation in medium 1 of an isotropic bimetal is attracted to the interface if

<0, (AD)

where o and § are the Dundurs parameters given by
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o= [, + 1) — (s + DTG+ D+ 52+ 1] (A2a)
B=[C0;—1)— (= DI/[T(x, + 1) +x,+1] (A2b)

and
r=%>o, L <k =3-dv, <7 (A3)

Since interchanging the labeling 1 and 2 is the same as letting « — —a and f— —§, the same dislocation in
medium 2 is attracted to the interface if

<0. (Ad)

But § can be written in the two equivalent forms

AT +K,) Tie, +1

S Tk A P SR . o AS
g T, + ) +ry+1 R WP (A3)

which clearly shows that for stable half-spaces

~1<f<1 sothat 1—-p>>0. (A6)
Thus, mutual attraction, which requires that both eqns (A1) and (A4) be satisfied, also requires that [adding eqns
(AD) and (A4)]
282
1-p*
which is impossible because of inequality (A6). This proves that mutual attraction for a pure edge dislocation is
impossible in a bimetal composed of two perfectly bonded isotropic linear elastic half-spaces. Although Dundurs

[1969, the sentence following eqn (4.11)] restricts x, and x, to the range 1 < k; < 3, the above proof is valid for
the full range 1 < k; < 7 (i.e. negative values of Poisson’s ratios are allowed for both phases).

<0, (A7)



